Welcome to CS1006B!

Who's Here Today?

Aero/Astro

African/Afro-
American Studies

Anthropology
Applied Physics
Bioengineering
Biology
Business

CME

Cancer Biology
Chemistry
Chinese

CEE

Computer Science
Economics

EE

Energy Resources
Engineering
Engineering
Environmental
Systems
Engineering

Film and Media
Studies

Geophysics

Human Biology
International Policy
IR

Law

MCS

MS&E

Materials Science
and Engineering

Mathematics
MechE

Medicine

Music

Philosophy

Public Policy

STS

Sociology
Statistics
Structural Biology
Symbolic Systems
Undeclared!
Urban Studies

Keith Schwarz Neel Kishnani
htiek@cs.stanford.edu neelk@stanford.edu

The CS106B Section Leaders

mailto:htiek@cs.stanford.edu
mailto:neelk@stanford.edu

Prerequisites

CS106A

(or equivalent)
(check out our course placement page if you’re unsure!)

https://cs106b.stanford.edu/course_placement

Course Website

https://cs106b.stanford.edu

We also have a course Canvas

site, which is mostly there
tor lecture videos and to
link you to other resources,

https://cs106b.stanford.edu/

Live Q&A

* Visit our EdStem page. It’s linked through the
course Canvas and also available here:

https://edstem.org/us/courses/32194/
 Next, find the pinned thread at the top entitled
LOO: Introduction

* Once you’ve found that thread, give it a ® to let us
know you’ve found it.

* Feel free to post questions here during lecture -
we can then answer asynchronously.

* You're always welcome to raise your hand if you
have any questions!

https://edstem.org/us/courses/32194/

00-Minute Lectures

« We have an 80-minute time slot for lectures this
quarter, but we’ll only use 60 of those minutes
(1:30PM - 2:30PM Pacific).

« Compared with a traditional 50-minute lecture, those
extra ten minutes give us time to
* answer your questions,
» explore and tinker with code,
* go at a more leisurely pace, and
* let you play around with the material.

 I'll stick around for the remaining 20 minutes of our
time block to chat with folks one-on-one about
whatever it is that you're interested in.

Our Textbook

e Our course textbook is

Programming Abstractions Pr ogra mmi ng
Abstractions in C++
++ by the legendary Eric
(: Roberts.

Eric S. Roberts

« There’s a draft version
available online.

« We’ve assigned readings
for each lecture. You can

either do them before or
after the lectures - your
choice.

https://web.stanford.edu/dept/cs_edu/resources/textbook/Reader-Beta-2012.pdf

Discussion Sections

» Starting next week, we’ll be holding weekly discussion
sections.

 We have our own section signup system that is
independent of the one run by Axess.

« Sign up between Thursday, January 12" at 5:00PM
Pacific and Sunday, January 15%* at 5:00PM Pacific by
visiting
https://cs198.stanford.edu/cs198/auth/default.aspx

* Looking forward: some of the later assignments can be
done in pairs. You must be in the same section as
someone to partner with them. You may want to
start thinking about folks you’d like to partner with.

https://cs198.stanford.edu/cs198/auth/default.aspx

Optional Add-Ons

 There are three one-unit courses you can optionally
add on to CS106B.

 These are in addition to rather than in place of a
regular discussion section.

« CS100B offers additional practice and support with the
material from CS106B in a small group setting. The
application is available online here.

 CS100L provides a deep dive into the C++ programming
language beyond what we’ll cover in CS106B.

« CS106S explores applications of the CS106B material to
social good.

 Feel free to chat with us about these courses after
class if you want to learn more!

https://docs.google.com/forms/d/e/1FAIpQLSfz4xHbWbH_LZmn8PlQ9XB24OLynzTdmC5YvQVC6s04R0C6dA/viewform

Grading Policies

Grading Policies

B 40% Assignments

Eight Coding
Assignments

Plus an intro assignment
that goes out today and is
due Friday.

Grading Policies

B 40% Assignments
m20% Midterm Exam

Midterm Exam

Monday, February 13t
7PM - 10PM

Grading Policies

B 40% Assignments
®20% Midterm Exam
30% Final Exam

Final Exam

Monday, March 20%®
8:30AM - 11:30AM

Grading Policies

B 40% Assignments
m20% Midterm Exam

30% Final Exam
M 5% Section Participation

Discussion Sections

Our world-famous
discussion sections!

Grading Policies

B 40% Assignments
m20% Midterm Exam
30% Final Exam
M 5% Section Participation
B 5% Lecture Participation

Lecture Participation

Starts next week. We’ll
discuss details later this
week.

What's Next in Computer Science?

Goals for this Course

« Learn how to model and solve
complex problems with computers.

 To that end:

 Explore common abstractions for
representing problems.

 Harness recursion and understand how to
think about problems recursively.

* Quantitatively analyze different approaches
for solving problems.

Goals for this Course

 Explore common abstractions for
representing problems.

http://www.publicdomainpictures.net/pictures/10000/velka/1-12658999740KJ9.ipg

http://www.publicdomainpictures.net/pictures/10000/velka/1-12658999740KJ9.ipg

Sentence

el M

Subject Verb Phrase Object
Noun Adverb Verb Possessive Noun
A4 A4 \J Y \J

CS106B totally rocks my socks

® 900

This structure is called a tree,
Knowing how fo model, represent,

and manipulate frees in software
makes it possible to solve
interesting problems,

Building a vocabulary of abstractions
makes it possible to represent and solve a
wider class of problems.

Goals for this Course

« Learn how to model and solve
complex problems with computers.

 To that end:

 Explore common abstractions for
representing problems.

 Harness recursion and understand how to
think about problems recursively.

* Quantitatively analyze different approaches
for solving problems.

Goals for this Course

 Harness recursion and understand how to
think about problems recursively.

A recursive solution is a solution that is
defined in terms of itself.

Goals for this Course

« Learn how to model and solve
complex problems with computers.

 To that end:

 Explore common abstractions for
representing problems.

 Harness recursion and understand how to
think about problems recursively.

* Quantitatively analyze different approaches
for solving problems.

Goals for this Course

* Quantitatively analyze different approaches
for solving problems.

ull, "status":"reviewed", "tsunami":0,"sig":369,"net":"us", "code":"2000j048","ids":",us2000j
urigln phase- data,“,"nst":null,“dmin":1.598,"rms“:@.?B,"gap":1@4,"magType":"mww",“type":"e
Tobelo, Indonesia"},"geometry":{"type":"Point","coordinates":[127.3157,2.3801,53.72]},"id"
{"type":"Feature","properties":{"mag":5.1,"place":"265km SW of Severo- Kurll sk
Russia", "time":1546548377590, "updated": 1546549398@49 "tz":600,"url":"https: f/earthquake.US
detail"-“httpa://earthquake.usgs.gov/earthquakes/feed/vl.0/detail/u52009j03t.geujson”,"fel
,"status":"reviewed","tsunami":0,"sig":400,"net":"us","code":"2000j03t","ids":",us2000j03t
gln phase-data,","nst":null, "dmin":5.198,"rms":0.94,"gap" :48, "magType": "mww", "type": "earth
Severo-Kuril'sk, Russia"},"geometry":{"type":"Point","coordinates":[153.7105,48.8712,104.7
{"type":"Feature","properties":{"mag":4.8,"place":"20km NNW of Taitung City,
Taiwan","time" :1546538570070, "updated":1546541624040,"tz":480,"url":"https://earthquake.us
detail":"https://earthquake.usgs.gov/earthquakes/feed/v1.0/detail/us2000j02k.geojson","fel
,"status":"reviewed", "tsunami":@,"sig":354,"net":"us",“code"-“ZB@@jBZk" "ids":",us2000j02k
gin,phase-data,","nst":null, "dmin":0.52,"rms":0.79, "gap" :110, "magType": "mb", "type":"earthqg
City, Taiwan"}, "geometry":{"type":"Point", "coordinates":[121.0489,22.9222,10]},"1id":"us200
{"type":"Feature","properties":{"mag":5,"place":"79km ENE of Petropavlovsk-Kamchatskiy,
Russia","time":1546538266300, "updated" :1546541474965,"tz":720,"url":"https://earthquake.us
detail":"https://earthquake.usgs.gov/earthquakes/feed/v1.0/detail/us2000j02g.geojson", "fel
us":"reviewed", "tsunami":@,"sig“:385,"net“:"us",“code":"2@@0j029”,"id5"'",U520@Bj92g," "s0
in,phase-data," "nst": null,"dmin":@.?ZB,"rms":0.75,“gap":114 '‘magType":"mb", "type":"earthq
Petropavlovsk-Kamchatskiy, Russia"},"geometry":{"type":"Point", "coordinates":[159.6844,53.
{"type":"Feature","properties":{"mag":4.5,"place":"South of Java,
Indonesia", "time" :1546533739000, "updated" :1546539809085, "tz":420, "url":"https://earthquake
","detail":"https://earthquake.usgs. gov/earthquakes/feed/vl.B/detail/u52@0@j024.ge0json","
tatus"'"rev1ewed" "tsunami":0,"sig":312,"net":"us", “code":“2090j924","id5"'",u52@90j024 ",
rigin, phase- data,","nst" null, "dmin":2.821,"rms":0.89,"gap":83, "magType":"mb", "type":"eart
Indonesia"}, "geometry": {"type"'“Point","coordinates“:[1@8.5165 -10.6419,8. 84]},"1d"'"u52@B
{"type":"Feature", “propertles :{"mag":4.8,"place":"108km N of Ishigaki,
Japan","time":1546529675300, "updated" :1546530815040, "tz":480,"url":"https://earthquake.usg
etail“-"https://earthquake.usg5.gov/earthquakes/feed/vl 0/detail/us2000j01x.geojson","felt
"status":"reviewed", "tsunami”:B,"sig":354,"net"'“us“ "code"'"ZGﬂejalx" "ids":",us2000j01x,
in,phase-data," "nst" null,"dmin":1.342,"rms":0.82, "gap" "magType":"mb", "type":"earthqu
Japan"}, “geometry" {"type":"Point",“coordinates":[124.1559,25.32@9,122.33]},"id"'“US2GB@]B
{"type":"Feature","properties":{"mag":5.4,"place":"82km S of Bristol Island, South Sandwic

Islands","time":1546519662810, "updated":1546520523040,"tz":-120,"url":"https://earthquake.
"rin'l'r-l'i'l"-"h'I"I'nc-!fnar‘fhmlakn meae anv/aarthmmialac /i faad /vl QA /7/datra1]l /ae?2000A0TH nantican™ "+

There are many ways to solve the same
problem. How do we quantitatively talk
about how they compare?

Goals for this Course

« Learn how to model and solve
complex problems with computers.

 To that end:

 Explore common abstractions for
representing problems.

 Harness recursion and understand how to
think about problems recursively.

* Quantitatively analyze different approaches
for solving problems.

Who's Here Today?

Aero/Astro

African/Afro-
American Studies

Anthropology
Applied Physics
Bioengineering
Biology
Business

CME

Cancer Biology
Chemistry
Chinese

CEE

Computer Science
Economics

EE

Energy Resources
Engineering
Engineering
Environmental
Systems
Engineering

Film and Media
Studies

Geophysics

Human Biology
International Policy
IR

Law

MCS

MS&E

Materials Science
and Engineering

Mathematics
MechE

Medicine

Music

Philosophy

Public Policy

STS

Sociology
Statistics
Structural Biology
Symbolic Systems
Undeclared!
Urban Studies

Transitioning to C++

Transitioning to C++

* I'm assuming that the majority of you are
either coming out of CS106A in Python coming
from AP CS in Java.

 In this course, we’ll use the C++ programming
language.

* Learning a second programming language is
substantially easier than learning a first.

* You already know how to solve problems; you just
need to adjust the syntax you use.

 While the languages are superficially different,
they have much in common.

Our First C++ Program

Pertfect Numbers

* A positive integer n is called a perfect
number if it’s equal to the sum of its positive
divisors (excluding itself).

» For example:

* 6 is perfect since 1, 2, and 3 divide 6 and
1+2+3=0.

« 28 is perfect since 1, 2, 4, 7, and 14 divide 28 and
1+2+4+7+ 14 = 28.

35 isn’t perfect, since 1, 5, and 7 divide 35 and
1+5+ 7= 35.

* Let’s find the first four pertect numbers.

def sumOfDivisorsOf(n):
"""Returns the sum of the positive divisors of the number n >= 0."""

total = 0
for 1 in range(1, n):
ifn%i-==
total += 1

return total;

found = © # How many perfect numbers we've found
number = 1 # Next number to test

Keep looking until we've found four perfect numbers.

while found < 4:
A number is perfect if the sum of its divisors is equal to it.

if sumOfDivisorsOf(number) == number:
print(number)
found += 1

number += 1

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
int total = 0;

for (int 1 = 1; 1 < n; 1++) {
ifF(n%i==0){
total += i;
}

}

return total;

int main() {
int found = 0; // How many perfect numbers we've found
int number = 1; // Next number to test

/* Keep looking until we've found four perfect numbers. */
while (found < 4) {
/* A number is perfect if the sum of its divisors is equal to it. */

if (sumOfDivisorsOf(number) == number) {
cout << number << endl;
found++;
}
number++;
}
return 0;

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {

int

int total = 0;

for (ANt 1 = 1; © < n; i++) { In Python, indentation
if (n%1==0) { alone determines nesting.
total += 1; . : :
} In C++, indentation is
} nice, but curly braces
return total; alone determine nesting.

main() {
int found = 0; // How many perfect numbers we've found
int number = 1; // Next number to test

/* Keep looking until we've found four perfect numbers. */
while (found < 4) {
/* A number is perfect if the sum of its divisors is equal to it. */

if (sumOfDivisorsOf(number) == number) {
cout << number << endl;
found++;
}
number++;
}
return 0;

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of

int sumOfDivisorsOf(int n) {
int total = 0;

for (int 1 = 1; 1 < n; 1++) {
if (n%1==0) {
total += i;
}

}

return total;

the number n >= 0. */

In Python, newlines mark
the end of statements.

In C++, individual
statements must have a
semicolon (;) after them.

int main() {
int found = 0; //
int number = 1; //

/* Keep looking unti
while (found < 4) {
/* A number 1is

if (sumOfDivisor
cout << number << endl;

found++;
}
number++;
}
return 0;

is equal to it. */

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {

int total = 0; :
for (int 1 = 1; 1 < n; 1++) { In Python, you p?mt output by
if (n%i==0) { using print().
) total += 15 In C++, you use the stream
) insertion operator (<<) to push
return total: data to the console. (Pushing
} endl prints a newline.)

int main() {
int found = 0; // How many perfect numbers we've found
int number = 1; // Next number to test

/* Keep looking until we've found four perfect numbers. */
while (found < 4) {
/* A number is perfect if the sum of its divisors is equal to it. */

if (sumOfDivisorsOf(number) == number) {
cout << number << endl;
found++;
}
number++;
}
return O;

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */

int sumOfDivisorsOf(int n) {
int total = 0;

for (int 1 = 1; 1 < n; 1++) {
if (n%1==0) {
total += i;
}

}

return total;

int main() {

In Python, you can optionally put
parentheses around conditions in
if statements and while loops.

In C++, these are mandatory.

int found = 0; // How many perfect numbers we've found
int number = 1; // Next number to test

/* Keep looking until we've found four perfect numbers. */

while (found < 4) {

/* A number is perfect if the sum of its divisors is equal to it. */

if (sumOfDivisorsOf(number)
cout << number << endl;

found++;
}
number++;
}
return O;

number) {

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {

int total = 0;
for (int i = 1; i < n; i++) { Python and C++ each have for
if (n % i2=0) { loops, but the syntax is different.

total += 1i; (Check the textbook for more
details about how this works!)

}

}

return total;

int main() {
int found = 0; // How many perfect numbers we've found
int number = 1; // Next number to test

/* Keep looking until we've found four perfect numbers. */
while (found < 4) {
/* A number is perfect if the sum of its divisors is equal to it. */

if (sumOfDivisorsOf(number) == number) {
cout << number << endl;
found++;
}
number++;
}
return 0;

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {

int total = 0; . - t —
for (int 1 = 1; 1 < n; i1++) { ++ has an operator ++ tha

f (n%i==0){ means “add one to this variable’s
total += 1i; value.” Python doesn’t have this.

}
}

return total;

int main() {
int found = 0; // How many perfect numbers we've found
int number = 1; // Next number to test

/* Keep looking until we've found four perfect numbers. */
while (found < 4) {
/* A number is perfect if the sum of its divisors is equal to it. */

if (sumOfDivisorsOf(number) == number) {
cout << number << endl;
found++;
}
number++;
}
return 0;

#include <iostream>
using namespace std;

[/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
int total = 0;

for (int 1 = 1; 1 < n; 1++) {

In Python, comments start with # and

f (n%1i==0){ continue to the end of the line.
) total += 1; In C++, there are two styles of
} comments. Comments that start with

/* continue until */. Comments that start

return total; :) _
with // continue to the end of the line.

int main() {
int found = 0; [/ How many perfect numbers we've found
int number = 1; J/ Next number to test

[/* Keep looking until we've found four perfect numbers. */
while (found < 4) {
[/* A number is perfect if the sum of its divisors is equal to it. ¥*/

if (sumOfDivisorsOf(number) == number) {
cout << number << endl;
found++;
}
number++;
}
return 0;

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
int total = 0;

for (int 1 = 1; 1 < n; i++) { In Python, each object has a
if (n%1==0){ type, but it isn’t stated
} total += 1; explicitly.
} In C++, you must give a type
return total; to each variable. (The int
} type represents an integer.)

int main() {
int found = 0; // How many perfect numbers we've found
int number = 1; // Next number to test

/* Keep looking until we've found four perfect numbers. */
while (found < 4) {
/* A number is perfect if the sum of its divisors is equal to it. */

if (sumOfDivisorsOf(number) == number) {
cout << number << endl;
found++;
}
number++;
}
return O;

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */

int

int

sumOfDivisorsOf(int n) {
int total = 0;
for (int 1 = 1; i < n; i+4) { In Python, statements can be either in
if (n% 1 ==0) { a function or at the top level of the
total += i; program.
}
} In C++, most statements must be
return total; inside of a function.

main() {

int found = 0; // How many perfect numbers we've found
int number = 1; // Next number to test

/* Keep looking until we've found four perfect numbers. */
while (found < 4) {
/* A number is perfect if the sum of its divisors is equal to it. */

if (sumOfDivisorsOf(number) == number) {
cout << number << endl;
found++;
}
number++;
}
return 0;

Why do we have both C++ and Python?

C++ and Python

 Python is a great language for data processing and writing
quick scripts across all disciplines.

« It’s pretty quick to make changes to Python programs and then
run them to see what’s different.

« Python programs, generally, run more slowly than C++
programs.

« C++ is a great language for writing high-performance
code that takes advantage of underlying hardware.

 Compiling C++ code introduces some delays between changing
the code and running the code.

 C++ programs, generally, run much faster than Python
programs.

 Knowing both languages helps you use the right tool for
the right job.

Your Action Items

* Read Chapter 1 of the textbook.

« Use this as an opportunity to get comfortable with the
basics of C++ programming and to read more
examples of C++ code.

* Start Assignment 0.

« Assignment O is due this Friday half an hour before the
start of class (1:00PM Pacific time). The assignment
and its starter files are up on the course website.

 No programming involved, but you’ll need to get your
development environment set up.

 There’s a bunch of documentation up on the course
website. Please feel free to reach out to us if there’s
anything we can do to help out!

Next Time

- Welcome to C++!
* Defining functions.
* Basic arithmetic.
* Writing loops.

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

