

Welcome to CS106B!

Who's Here Today?
● Aero/Astro
● African/Afro-

American Studies
● Anthropology
● Applied Physics
● Bioengineering
● Biology
● Business
● CME
● Cancer Biology
● Chemistry
● Chinese
● CEE
● Computer Science
● Economics

● EE
● Energy Resources

Engineering
● Engineering
● Environmental

Systems
Engineering

● Film and Media
Studies

● Geophysics
● Human Biology
● International Policy
● IR
● Law
● MCS
● MS&E

● Materials Science
and Engineering

● Mathematics
● MechE
● Medicine
● Music
● Philosophy
● Public Policy
● STS
● Sociology
● Statistics
● Structural Biology
● Symbolic Systems
● Undeclared!
● Urban Studies

Course Staff

Keith Schwarz
htiek@cs.stanford.edu

Neel Kishnani
neelk@stanford.edu

The CS106B Section Leaders

mailto:htiek@cs.stanford.edu
mailto:neelk@stanford.edu

Prerequisites

CS106A
(or equivalent)

(check out our course placement page if you’re unsure!)

https://cs106b.stanford.edu/course_placement

https://cs106b.stanford.edu

Course Website

We also have a course Canvas
site, which is mostly there
for lecture videos and to
link you to other resources.

https://cs106b.stanford.edu/

Live Q&A

● Visit our EdStem page. It’s linked through the
course Canvas and also available here:

https://edstem.org/us/courses/32194/
● Next, find the pinned thread at the top entitled

L00: Introduction
● Once you’ve found that thread, give it a to let us ❤

know you’ve found it.
● Feel free to post questions here during lecture –

we can then answer asynchronously.
● You’re always welcome to raise your hand if you

have any questions! 🙋

https://edstem.org/us/courses/32194/

60-Minute Lectures

● We have an 80-minute time slot for lectures this
quarter, but we’ll only use 60 of those minutes
(1:30PM – 2:30PM Pacific).

● Compared with a traditional 50-minute lecture, those
extra ten minutes give us time to
● answer your questions,
● explore and tinker with code,
● go at a more leisurely pace, and
● let you play around with the material.

● I’ll stick around for the remaining 20 minutes of our
time block to chat with folks one-on-one about
whatever it is that you’re interested in. 😃

Our Textbook

● Our course textbook is
Programming
Abstractions in C++
by the legendary Eric
Roberts.
● There’s a draft version

available online.
● We’ve assigned readings

for each lecture. You can
either do them before or
after the lectures – your
choice.

https://web.stanford.edu/dept/cs_edu/resources/textbook/Reader-Beta-2012.pdf

Discussion Sections

● Starting next week, we’ll be holding weekly discussion
sections.

● We have our own section signup system that is
independent of the one run by Axess.

● Sign up between Thursday, January 12th at 5:00PM
Pacific and Sunday, January 15th at 5:00PM Pacific by
visiting

https://cs198.stanford.edu/cs198/auth/default.aspx
● Looking forward: some of the later assignments can be

done in pairs. You must be in the same section as
someone to partner with them. You may want to
start thinking about folks you’d like to partner with.

https://cs198.stanford.edu/cs198/auth/default.aspx

Optional Add-Ons

● There are three one-unit courses you can optionally
add on to CS106B.

● These are in addition to rather than in place of a
regular discussion section.
● CS100B offers additional practice and support with the

material from CS106B in a small group setting. The
application is available online here.

● CS106L provides a deep dive into the C++ programming
language beyond what we’ll cover in CS106B.

● CS106S explores applications of the CS106B material to
social good.

● Feel free to chat with us about these courses after
class if you want to learn more!

https://docs.google.com/forms/d/e/1FAIpQLSfz4xHbWbH_LZmn8PlQ9XB24OLynzTdmC5YvQVC6s04R0C6dA/viewform

Grading Policies

40% Assignments
20% Midterm Exam
30% Final Exam
5% Section Participation
5% Lecture Participation

Grading Policies

Eight Coding
Assignments

Plus an intro assignment
that goes out today and is

due Friday.

40% Assignments
20% Midterm Exam
30% Final Exam
5% Section Participation
5% Lecture Participation

Grading Policies

Midterm Exam

Monday, February 13th

7PM – 10PM

40% Assignments
20% Midterm Exam
30% Final Exam
5% Section Participation
5% Lecture Participation

Grading Policies

Final Exam

Monday, March 20th

8:30AM – 11:30AM

40% Assignments
20% Midterm Exam
30% Final Exam
5% Section Participation
5% Lecture Participation

Grading Policies

Discussion Sections

Our world-famous
discussion sections!

40% Assignments
20% Midterm Exam
30% Final Exam
5% Section Participation
5% Lecture Participation

Grading Policies

Lecture Participation

Starts next week. We’ll
discuss details later this

week.

What's Next in Computer Science?

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:
● Explore common abstractions for

representing problems.

Harness recursion and understand how to
think about problems recursively.

Quantitatively analyze different approaches
for solving problems.

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

Sentence

Subject Verb Phrase Object

CS106B

Adverb Verb Possessive Noun

totally rocks my socks

Noun

http://en.wikipedia.org/wiki/File:Tree_of_life_SVG.svg

Hey, that's
us!

This structure is called a tree.
Knowing how to model, represent,
and manipulate trees in software

makes it possible to solve
interesting problems.

Building a vocabulary of abstractions
makes it possible to represent and solve a

wider class of problems.

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:

Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

Quantitatively analyze different approaches
for solving problems.

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

A recursive solution is a solution that is
defined in terms of itself.

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:

Explore common abstractions for
representing problems.

Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

There are many ways to solve the same
problem. How do we quantitatively talk

about how they compare?

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Who's Here Today?
● Aero/Astro
● African/Afro-

American Studies
● Anthropology
● Applied Physics
● Bioengineering
● Biology
● Business
● CME
● Cancer Biology
● Chemistry
● Chinese
● CEE
● Computer Science
● Economics

● EE
● Energy Resources

Engineering
● Engineering
● Environmental

Systems
Engineering

● Film and Media
Studies

● Geophysics
● Human Biology
● International Policy
● IR
● Law
● MCS
● MS&E

● Materials Science
and Engineering

● Mathematics
● MechE
● Medicine
● Music
● Philosophy
● Public Policy
● STS
● Sociology
● Statistics
● Structural Biology
● Symbolic Systems
● Undeclared!
● Urban Studies

Transitioning to C++

Transitioning to C++

● I’m assuming that the majority of you are
either coming out of CS106A in Python coming
from AP CS in Java.

● In this course, we’ll use the C++ programming
language.

● Learning a second programming language is
substantially easier than learning a first.
● You already know how to solve problems; you just

need to adjust the syntax you use.
● While the languages are superficially different,

they have much in common.

Our First C++ Program

Perfect Numbers

● A positive integer n is called a perfect
number if it’s equal to the sum of its positive
divisors (excluding itself).

● For example:
● 6 is perfect since 1, 2, and 3 divide 6 and

1 + 2 + 3 = 6.
● 28 is perfect since 1, 2, 4, 7, and 14 divide 28 and

1 + 2 + 4 + 7 + 14 = 28.
● 35 isn’t perfect, since 1, 5, and 7 divide 35 and

1 + 5 + 7 ≠ 35.
● Let’s find the first four perfect numbers.

def sumOfDivisorsOf(n):
 """Returns the sum of the positive divisors of the number n >= 0."""
 total = 0

 for i in range(1, n):
 if n % i == 0:
 total += i

 return total;

found = 0 # How many perfect numbers we've found
number = 1 # Next number to test

Keep looking until we've found four perfect numbers.
while found < 4:
 # A number is perfect if the sum of its divisors is equal to it.
 if sumOfDivisorsOf(number) == number:
 print(number)
 found += 1

 number += 1

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, indentation
alone determines nesting.

In C++, indentation is
nice, but curly braces

alone determine nesting.

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, newlines mark
the end of statements.

In C++, individual
statements must have a
semicolon (;) after them.

total += i;

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, you print output by
using print().

In C++, you use the stream
insertion operator (<<) to push

data to the console. (Pushing
endl prints a newline.)

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, you can optionally put
parentheses around conditions in
if statements and while loops.

In C++, these are mandatory.

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

Python and C++ each have for
loops, but the syntax is different.

(Check the textbook for more
details about how this works!)

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

C++ has an operator ++ that
means “add one to this variable’s
value.” Python doesn’t have this.

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, comments start with # and
continue to the end of the line.

In C++, there are two styles of
comments. Comments that start with

/* continue until */. Comments that start
with // continue to the end of the line.

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, each object has a
type, but it isn’t stated

explicitly.

In C++, you must give a type
to each variable. (The int

type represents an integer.)

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, statements can be either in
a function or at the top level of the

program.

In C++, most statements must be
inside of a function.

Why do we have both C++ and Python?

C++ and Python

● Python is a great language for data processing and writing
quick scripts across all disciplines.
● It’s pretty quick to make changes to Python programs and then

run them to see what’s different.
● Python programs, generally, run more slowly than C++

programs.
● C++ is a great language for writing high-performance

code that takes advantage of underlying hardware.
● Compiling C++ code introduces some delays between changing

the code and running the code.
● C++ programs, generally, run much faster than Python

programs.
● Knowing both languages helps you use the right tool for

the right job.

Your Action Items

● Read Chapter 1 of the textbook.
● Use this as an opportunity to get comfortable with the

basics of C++ programming and to read more
examples of C++ code.

● Start Assignment 0.
● Assignment 0 is due this Friday half an hour before the

start of class (1:00PM Pacific time). The assignment
and its starter files are up on the course website.

● No programming involved, but you’ll need to get your
development environment set up.

● There’s a bunch of documentation up on the course
website. Please feel free to reach out to us if there’s
anything we can do to help out!

Next Time

● Welcome to C++!
● Defining functions.
● Basic arithmetic.
● Writing loops.

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

